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Equations of motion in linearised gravity: I11 Radiation of 
four-momentum 

P A Hogan 
Mathematical Physics Dept., University College, Belfield, Dublin 4, Ireland and School of 
Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, 
Ireland 

Received 23 October 1979, in final form 20 December 1979 

Abstracf. We suggest a conserved ‘energy-momentum tensor’ for the Robinson-Trautman 
solutions of the Einstein and the Einstein-Maxwell vacuum field equations which, in the 
linear approximation discussed in earlier papers, is shown to yield to first order a rate of 
radiation of four-momentum equal to the loss of four-momentum by the source. In the case 
of a charged source we obtain the Litrmor formula. 

1. Introduction 

For the Robinson-Trautman (1 962) solutions of the Einstein vacuum field equations 
the ‘main equations’, in the terminology of Sachs (1962), can be integrated and the 
‘subsidiary conditions’ reduced to one equation (two equations in the Einstein-Maxwell 
case). Referring to this one equation as the ‘propagation equation’, Derry et a1 (1969) 
point out that ‘for these solutions the metric must deterministically evolve in time 
according to the propagation equation in order that the shear-free property (of the 
principal null rays) be maintained. Therefore, ‘news’ in the sense of Bondi, van der 
Burg and Metzner (1962) is not allowed’. Using asymptotic symmetry linkages 
introduced by Tamburino and Winicour (1966), Derry et a1 obtain a formula for the 
energy radiation rate. This radiation rate, if it exists, is in general of second order when 
applied to the linearised form of the Robinson-Trautman fields described in earlier 
papers (Hogan and Imaeda 1979a,b,c). For a uniformly accelerated source in 
linearised theory it diverges. In addition, the Larmor formula (cf Synge (1965) p 392), 
which gives a first-order energy radiation rate (in Hogan and Imaeda (1979b) it is 
assumed that (mass) and (charge)2 are both small of first order) from an accelerating 
charged mass, might be expected to emerge from a suggested formula for the rate of 
energy radiated, when applied to the linearised Robinson-Trautman solutions of the 
Einstein-Maxwell equations. 

In this paper we describe a conserved ‘energy-momentum tensor’ for the Robinson- 
Trautman solutions. It is motivated partly on mathematical grounds. It is a symmetric, 
divergence-free, two-index tensor which is invariant under the group of trans- 
formations which leave invariant the line element and four-potential under considera- 
tion. Furthermore, when it is applied to the linearised Robinson-Trautman fields 
discussed earlier we find a rate of radiation of four-momentum which is 
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( 1 )  independent of the time-like three-surface r = constant, across which it is 

( 2 )  equal to the rate of loss of four-momentum by the source; 
( 3 )  equal to the Larmor energy radiation rate if the source carries charge. 

measured, for 0 < r < +CO; 

2. Exact theory 

Since we shall be interested in both charged and uncharged sources we quote initially 
the Robinson-Trautman (1962; Robinson (1973) private communication to the 
author) solutions of the Einstein-Maxwell vacuum field equations. The line element 
and four-potential are given respectively by 

ds2 = 2r2Pp2 d 5  d l -  2 d r  d o  - h do2,  (2.1) 

-F do, (2.2) 

and the one-form 

where 

P = m, st U ) ,  ( 2 . 3 ~ )  

h = K - 2Hr - 2Mr-’ + e2rP2 (2.36) 

F = e(r-’ - w), ( 2 . 3 ~ )  

K = A l n P  (A = 2p2 a2/a5 a& (2.3d) 

H = a(ln P)/ao, (2.3e) 

~ = m + 2 e ’ w  ( m  = do)), (2 .3f)  

(e  = e ( o ) ) ,  

w = W ( 5 , L  U), 

and the ‘subsidiary conditions’ referred to in 4 1 are 

4AK = A?- 3 H M +  e2N, ( 2 . 4 ~ )  

Aw = e-’e - 2 H .  (2.4b) 

Here the dot denotes differentiation with respect to U, 

and we have chosen units for which c = G = 1 and Gaussian electromagnetic units. The 
coordinates r, U are real and 5 is complex with complex conjugate & 

The Weyl and Maxwell tensors have, in coordinates x i  = (5, r, U ) ,  

k i = 6 ’  3 - - - g  i4  (2.6) 
as a principal null direction (which is degenerate in the case of the Weyl tensor). In (2.6) 
g” is the inverse of the metric tensor gij given by (2.1). The integral curves of (2.6) are 
geodesic with affine parameter r along them. Thus 

k’ijk’ = 0, (2.7) 
the stroke indicating covariant differentiation with respect to the metric gij given by 
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(2.1). In addition k’ is twist-free, shear-free and has expansion r - ’ .  The latter is 
expressed by the equation 

(2.8) & i , -  l . - r  - 1  . 

The group of coordinate transformations which preserve the form of (2.1) and (2.2) 
is (cf Robinson and Trautman (1962)) 

s = *(Sf), r = r’/+(a’), 0- = Y ( d ,  (2.9) 

with $ an analytic function of 5’ and the dot indicating differentiation with respect to a’. 
Under (2.9) the quantities appearing in (2.1)-(2.3) transform in the following way: 

m’= y . 3  m, 
P’= +Pla*/as’l-l, e ‘ =  +’e, w I  = y - 1  

K‘= y2K,  H’ = y j y  + ?+-I, 
(2.10) 

W. 

The first four equations in (2.10) have been quoted in Robinson and Trautman (1962). 
We note that M, given by (2.3f), transforms as 

M’= y3M, (2.11) 

in the same fashion as m in (2.10). 

3. Energy-momentum tensor 

Consider the two-index symmetric tensor Ti’ given by 

4rT” = r-’Jk‘k’, J = JU, & a). (3.1) 

T”lj = 0, (3.2) 

On account of (2.7) and (2.8) we have 

irrespective of the choice of the function J. We shall tentatively refer to (3.1) as an 
energy-momentum tensor. A reasonable requirement of (3.1) is that it should be 
invariant under the group of transformations (2.9). From (2.6) and (2.1) we have 
ki dx’ = -du and thus under (2.9) 

47rT,’ dx’ dx’ = rW2J d a 2  = r’-’J’ d d 2 ,  (3.3) 
provided 

J’= y4J.  (3.4) 
Two obvious quantities which have this transformation property under (2.6), and have 
the required dimensions, i.e. are dimensionless in our units, are 

M-3HM and e2N.  (3.5) 
If we choose J = e 2 N  then Ti’ in (3.1) becomes the radiative, i.e. O(r-’), part of the 
electromagnetic energy-momentum tensor for the solutions described in 0 1. We reject 
this choice because we would have Ti’ = 0 when e = 0 and we wish to be able to calculate 
from (3.1) a non-zero rate of radiation of four-momentum in the neutral case e = 0. On 
the other hand the first expression of (3.5) is a serious contender. If e = 0 it becomes 

m-3Hm. (3.6) 



1744 P A  Hogan 

Under (2.6) this transforms as in (3 .4 )  and this has led Robinson and Trautman (1962) 
to remark that 'ni - 3 H m  # 0 is an invariant statement, an4 it may be taken, very 
tentatively, as a criterion for radiation in the case m f 0'. 

In the light of these observations, and rather than prolong the discussion, we 
propose to take 

J = -jM - 3Hhrl). (3.7) 
'This choice, including the choice of minus sign, will be justified at the level of the 
linearised theory in the following section. 

In the linearised theory of (2.1)-(2.4) the metric is expanded about the Minkowskian 
metric in the coordinates (l, r, a) (cf Hogan and Imaeda 1979b). In the background 
Minkowskian space-time r = 0 is a timelike world-line (the history of the source) and a 
is proper time along it. The null vector field in (2.6) is tangent to the generators of the 
future null-cones with vertices on r = 0. These null-cones have equations (r = constant. 
The connection between the coordinates (l, r, a) and rectangular Cartesian coor- 
dinates and time X' = (x, y, z,  t )  is 

X' = x ' ( a )  t rk', (4.1) 

where clearly XI = ~ ' ( r r )  is the equation of r = 0. In the coordinates X' one has (Hogan 
and Imaeda 1979a) 

k',,k' = 0 ,  (4.2) 

the cornma indicating partial differentiation with respect to X', and 

Thus, when viewed in terms of A", T" given by (3.1) satisfies 

T",, = 8. (4.4) 

J = 3 m p ' k l  - 2e2v1k ,  - 8 e L ( p u k , ) 2 .  (4.5) 

Referring to Hogan and Imaeda (1979b), the linearised form of the expression (3 .7 )  is 

Here m and e 2  are small of first order, p f  is the four-acceleration of the source r = 0, 
v' = dp" /da  and we have chosen e = constant and m = constant. One can show that 
unless both e and m are choseil to be constants, the linearised field components will 
have unavoidable wire singularities. 

Jf we apply the conservation law (4.4) eo the four-volume of Minkowskian space- 
time bounded by the null-cones a = ul, CT = a2(a2 > aI) and the three-surfaces r = r l ,  
x = r2(r2 > r l )  it is a straightforward matter, using the calculations of Synge (1970), to 
Show that since T" is proportional to k'k' there is no flux of four-momentum across the 
null-cones a = g1, a = az and that therefore the flux of four-momentum across r = r l  
must equal the flux of four-momentum across r = r2 .  Thus the flux of four-momentum 
across a three-surface r = constant, calculated with T" given by (3.1) and (4.5), and thus 
satisfying (4.4)9 is independent of the particular three-surface r = constant, for O <  r < 
+W. 
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The rate of change with proper time u of the outward flux of four-momentum across 
r = constant i s  given by (cf Synge (1970)) 

(4.6) 

where, using the formulae given in Hogan and Imaeda (1979a), 

I , ]  = -A, i Ck,, 

C = 1 t rF'k1. 

(4.71 
where A'  = dx'/du(A'A, = --1) is the four-velocity of I = 0 and 

(4.8) 

Also k '  is normalised so that k'A, = - 1 and dw is the surface element on the unit sphere. 
By (3.11, (4.5) and (4.7) we have 

4.rrr2T"r,, = [3mp1kl -2e2u'k, -8e2(p'k,)2]k' .  

We may write 

k '  = A '  + p ' ,  p'p,  = -t-1, p'A, = 0 ,  

and using 

p'A, = 0 ,  y 'A l  = -p 'p = -p,' 

and the results 

(4.9) 

(4.10) 

14.11) 

4 T  
p i p i  dw = - ( ~ " - t  A'A ' ) ,  1 p p l p k  dw = 0, 5 3 

p '  dw = 0, I dw = 4 ~ ,  I 
(4.12) 

a calculation of (4.6) yields 

(4.13) 

From this we see that if e = 0 then the rate of radiation of four-momentum P' equals the 
rate of loss (hence the minus sign in (3.7)) of four-momentum mA' of the source r = 0. If 
the source is charged then the rate at which energy E is escaping is calculated from 
(4.13). Since it is a Lorentz invariant result we can obtain it by first choosing a frame of 
reference, at some U =L constant, for which A '  = 8;.  Then, by (4.11), in this frame 
p = 0, vJ = papa(& = 1,2 ,3) ,  and (4.13) gives 

dP4/drr =?e pap,,. 

4 

(4.14) 2 2  

This may be expressed in an arbitrary frame of reference a5 

(4.151 

where E = -A,P'. We have obtained in (4.15) the well-known Larmor forniula (cf 
Synge (1965) p 392). 

2 2  2 dE/du  = je p , 

If e Z 0 and we take its equation of motion to be the Lorentz-Dirac equation 

mp'  = $ e 2 ( v ' - p 2 A ' ) ,  (4.16) 

(we have already noted (Hogan and Imaeda 1979b) that such an equation emerges from 
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the present theory without the occurrence of an infinite self-energy term) then (4.13) 
simplifies to 

(4.17) 

the known formula for the radiation rate of four-momentum by a run-away charge, 
calculated with the LiCnard-Wiechert potential (see, for example, Schild (1960)). 

Finally we observe that (4.13) suggests that we might refer to the quantity 

2 2  2 1  dP ' lda  = ~ e  p A , 

(4.18) 2 2  I p ' = m , i ' - s e  p 

as the four-momentum of a mass m of charge e. 

5. Discussion 

The extension of the calculation of (4.6) beyond the linear approximation would 
logically appear to involve the use of the form (3.2) of the conservation law rather than 
the Lorentz covariant form (4.4). One can, of course, calculate the 02-contribution to J 
in (4.5) using (3.7), and use it directly in the evaluation of (4.6). This would appear to be 
an incorrect procedure. We have carried it out both for a uniformly accelerated source 
and the run-away charge. In the former case the 02-contribution to (4.6) is divergent, 
while it is finite but ambiguous (involving an arbitrary function of c arising from the 
integration of the field equations) in the latter case. 
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